Kneeliverse: A universal knee-detection library for performance curves
Mario Antunes, Tyler Estro, Pranav Bhandari, Anshul Gandhi, Geoff Kuenning, Yifei Liu, Carl Waldspurger, Avani Wildani, Erez ZadokAbstract
Identifying knee and elbow points in performance curves is a critical task in various domains, including machine learning and system design. These points represent optimal trade-offs between cost and performance, facilitating efficient decision-making and resource allocation. However, accurately determining the knees and elbows in curves poses a significant challenge. To address this challenge, we introduce Kneeliverse , an open-source library dedicated to knee/elbow point detection. Kneeliverse incorporates a suite of well-established knee-detection algorithms, including Menger, L-method, Kneedle, and DFDT. Additionally, Kneeliverse extends these algorithms to detect multiple knees and elbows in complex curves, employing a recursive approach. Kneeliverse further includes Z-Method, a recently developed algorithm specifically designed for multi-knee detection.